
3D LUT interpolation

JD Vandenberg
August 28th, 2019

Copyright c©2017 JD Vandenberg All rights reserved 1/48

LUT: Look Up Table

◮ A faster way to implement a function between two discrete
finite sets. A = {0, 1, 2, 3, . . . , 2N − 1}, f : A → A

◮ A value comes in and the corresponding output value comes
out.

◮ For a 10bit video, the code book has 210 = 1024 entries for
each primary (red, green, blue).

Example:

0 0
1 0
2 15
3 125
4 14
...

...
1023 1020

Copyright c©2017 JD Vandenberg All rights reserved 2/48

LUT: Look Up Table - 1D

◮ Such a LUT is referred to as a 1 dimensional LUT (or 1D
LUT)

◮ One 1D LUT can be used to alter the luminance of the image
(tone mapping)

◮ 3x 1D LUT can be used to alter each color primary separately
but can’t alter a particular color without affecting others
(r , g , b)

◮ A 10bit video signal is composed of a pair of 3 values between
0 and 210 − 1 = 1023 for each transported pixel.

◮ Example:
◮ (0, 0, 0) - black
◮ (1023, 1023, 1023) - white
◮ (1023, 0, 0) - red
◮ (0, 1023, 0) - green
◮ (0, 0, 1023) - blue
◮ (1023, 1023, 0) - yellow
◮ · · ·

Copyright c©2017 JD Vandenberg All rights reserved 3/48

LUT: Look Up Table - 3D

◮ A 3D LUT is a LUT containing entries for each possible
(r , g , b) triplets.

◮ Problem: For a 10-bit video signal, this table would have
(210)3 = 1, 073, 741, 824 entries each containing a 30-bit
value (10 bits per channel) = 32, 212, 254, 720 bits =
4.02653184 Gigabyte.

◮ The system (hardware or software) would have to parse
through a 4.03 Gigabyte memory for every pixel.

◮ In 4K (UHD: 3, 840x2, 160) at 30fps, that is 8, 294, 400 pixels
30 times per second or 248, 832, 000 scans of that Look Up
Table per second!

◮ We need to find another way

Copyright c©2017 JD Vandenberg All rights reserved 4/48

LUT: Look Up Table - 3D

◮ A 3D LUT is a LUT containing entries for each possible
(r , g , b) triplets.

◮ Problem: For a 10-bit video signal, this table would have
(210)3 = 1, 073, 741, 824 entries each containing a 30-bit
value (10 bits per channel) = 32, 212, 254, 720 bits =
4.02653184 Gigabyte.

◮ The system (hardware or software) would have to parse
through a 4.03 Gigabyte memory for every pixel.

◮ In 4K (UHD: 3, 840x2, 160) at 30fps, that is 8, 294, 400 pixels
30 times per second or 248, 832, 000 scans of that Look Up
Table per second!

◮ We need to find another way

Copyright c©2017 JD Vandenberg All rights reserved 4/48

LUT: Look Up Table

◮ Solution: storing a sparse 3D LUT and use interpolation to
recover values.

Copyright c©2017 JD Vandenberg All rights reserved 5/48

LUT: Look Up Table
PROS:

◮ Very light file.

◮ Typically 333 = 35, 937 entries

◮ intuitive and easy to use.

CONS:

◮ Error due to interpolation

◮ All the colors are treated the same way

◮ Hardware often impose table to be be RGB

Copyright c©2017 JD Vandenberg All rights reserved 6/48

3D LUT interpolation: Trilinear interpolation

B
R

G

(0,0,0)

(1023,1023,1023)

Copyright c©2017 JD Vandenberg All rights reserved 7/48

3D LUT interpolation: Trilinear interpolation

B
R

G

Copyright c©2017 JD Vandenberg All rights reserved 8/48

3D LUT interpolation: Trilinear interpolation

B
R

G

Copyright c©2017 JD Vandenberg All rights reserved 9/48

3D LUT interpolation: Trilinear interpolation

(r , g , b)

(R0,G0,B0)

(R0,G0,B1)
(R1,G0,B0)

(R1,G0,B1)

(R0,G1,B0)

(R0,G1,B1)
(R1,G1,B0)

(R1,G1,B1)

B
R

G

Copyright c©2017 JD Vandenberg All rights reserved 10/48

3D LUT interpolation: Trilinear interpolation

Notation: Upper case for mesh points. lower case for points non
on the grid.
V (r , g , b) is the value at the point with coordinate (r , g , b).
We start by calculating the distance between each node per
coordinate:

∆r =
r − R0

R1 − R0

∆g =
g − G0

G1 − G0

∆b =
b − B0

B1 − B0

This is simply the proportion of each before and after mesh point
there is in the point x .

Copyright c©2017 JD Vandenberg All rights reserved 11/48

3D LUT interpolation: Trilinear interpolation

We start with red (the result is independent of the order) and
calculate the value at each 4 points by doing the weighted average:

V (r ,G0,B0) = V (R0,G0,B0)(1−∆r) + V (R1,G0,B0)∆r

V (r ,G0,B1) = V (R0,G0,B1)(1−∆r) + V (R1,G0,B1)∆r

V (r ,G1,B0) = V (R0,G1,B0)(1−∆r) + V (R1,G1,B0)∆r

V (r ,G1,B1) = V (R0,G1,B1)(1−∆r) + V (R1,G1,B1)∆r

Copyright c©2017 JD Vandenberg All rights reserved 12/48

3D LUT interpolation: Trilinear interpolation

Now that we have computed those values, we move on to the
green channel:

V (r , g ,B0) = V (r ,G0,B0)(1−∆g) + V (r ,G1,B0)∆g

V (r , g ,B1) = V (r ,G0,B1)(1−∆g) + V (r ,G1,B1)∆g

Finally we can compute the value at the point (r , g , b)
interpolating the blue channel:

V (r , g , b) = V (r , g ,B0)(1−∆b) + V (r , g ,B1)∆b

Copyright c©2017 JD Vandenberg All rights reserved 13/48

3D LUT interpolation: Trilinear interpolation

(r , g , b)

(r ,G0,B0)

(r ,G0,B1)

(r ,G1,B0)

(r ,G1,B1)

(R0,G0,B0)

(R0,G0,B1)
(R1,G0,B0)

(R1,G0,B1)

(R0,G1,B0)

(R0,G1,B1)
(R1,G1,B0)

(R1,G1,B1)

Copyright c©2017 JD Vandenberg All rights reserved 14/48

3D LUT interpolation: Trilinear interpolation

(r , g , b)

(r ,G0,B0)

(r ,G0,B1)

(r ,G1,B0)

(r ,G1,B1)

(r , g ,B0)

(r , g ,B1)

(R0,G0,B0)

(R0,G0,B1)
(R1,G0,B0)

(R1,G0,B1)

(R0,G1,B0)

(R0,G1,B1)
(R1,G1,B0)

(R1,G1,B1)

Copyright c©2017 JD Vandenberg All rights reserved 15/48

3D LUT interpolation: Trilinear interpolation

The general expression for the trilinear interpolation can be
expressed as

V (r , g , b) = c0 + c1∆b + c2∆r + c3∆g + c4∆b∆r

+c5∆r∆g + c6∆g∆b + c7∆r∆g∆b
(1)

with:
c0 = V (R0,G0,B0)
c1 = V (R0,G0,B1)− V (R0,G0,B0)
c2 = V (R1,G0,B0)− V (R0,G0,B0)
c3 = V (R0,G1,B0)− V (R0,G0,B0)
c4 = V (R1,G0,B1)−V (R1,G0,B0)−V (R0,G0,B1)+V (R0,G0,B0)
c5 = V (R1,G1,B0)−V (R0,G1,B0)−V (R1,G0,B0)+V (R0,G0,B0)
c6 = V (R0,G1,B1)−V (R0,G1,B0)−V (R0,G0,B1)+V (R0,G0,B0)
c7 = V (R1,G1,B1)−V (R1,G1,B0)−V (R0,G1,B1)−V (R1,G0,B1)
+V (R0,G0,B1) + V (R0,G1,B0) + V (R1,G0,B0)− V (R0,G0,B0)

Copyright c©2017 JD Vandenberg All rights reserved 16/48

3D LUT interpolation: Trilinear interpolation

Expressed in matrix form:

C =

c0 c1 c2 c3 c4 c5 c6 c7

T

∆ =

1 ∆b ∆r ∆g ∆b∆r ∆r∆g ∆g∆b ∆r∆g∆b

T

V (r , g , b) = CT∆

Copyright c©2017 JD Vandenberg All rights reserved 17/48

3D LUT interpolation: Trilinear interpolation

Expressed in matrix form:

c0
c1
c2
c3
c4
c5
c6
c7

=

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
1 0 −1 0 −1 0 1 0
1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
−1 1 1 −1 1 −1 −1 1

V (R0,G0,B0)
V (R0,G1,B0)
V (R1,G0,B0)
V (R1,G1,B0)
V (R0,G0,B1)
V (R0,G1,B1)
V (R1,G0,B1)
V (R1,G1,B1)

The expression above can be written as:
C = AV
And the trilinear interpolation as:
V (r , g , b) = CT∆ = V TAT∆

Copyright c©2017 JD Vandenberg All rights reserved 18/48

3D LUT interpolation: Trilinear interpolation

And the trilinear interpolation can be written as:
V (r , g , b) = CT∆ = V TAT∆
Note that the term V TAT doesn’t depend on the variable (r , g , b)
and thus can be computed in advance. So, each sub-cube can have
the values of the vector C already stored in memory. Therefore the
algorithm can be summarize as:

◮ Find the sub-cube the point (r , g , b) is located in.

◮ Select the vector C corresponding to that sub-cube.

◮ Compute ∆r , ∆g , ∆b

◮ Return V (r , g , b) = CT∆

Copyright c©2017 JD Vandenberg All rights reserved 19/48

3D LUT interpolation: other interpolations

One idea to speed-up the computation (and hopefully increase its
accuracy) is to use a smaller sub-section of the cube.
There are only three ways of slicing a cube into multiple 3D
structures with equal number of vertices:

◮ Prisms (each having six vertices)

◮ Pyramids (each having five vertices)

◮ Tetrahedrons (each having four vertices)

Copyright c©2017 JD Vandenberg All rights reserved 20/48

3D LUT interpolation: Prism interpolation

B
R

G

B
R

G

The algorithm chooses the prism based on the cases:

◮ if ∆b > ∆r , we choose the left prism (p1).

◮ if ∆b < ∆r , we choose the right prism (p2).

◮ if ∆b = ∆r , we choose either prism.

Copyright c©2017 JD Vandenberg All rights reserved 21/48

3D LUT interpolation: Prism interpolation

Triangular interpolation:

V (R0,G0,B1) V (R1,G0,B1)

V (R0,G0,B0)

V (r , g , b)?

Copyright c©2017 JD Vandenberg All rights reserved 22/48

3D LUT interpolation: Prism interpolation

Triangular interpolation:

V (R0,G0,B1) V (R1,G0,B1)

V (R0,G0,B0)

S101

S000

S001

V (r , g , b) =
V (R0,G0,B0)

S000
Stot

+ V (R0,G0,B1)
S001
Stot

+ V (R1,G0,B0)
S100
Stot

Copyright c©2017 JD Vandenberg All rights reserved 23/48

3D LUT interpolation: Prism interpolation

Triangular interpolation:

V (R0,G0,B1) V (R1,G0,B1)

V (R0,G0,B0)

S101

S000

S001

Surface is given by the shoelace formula:

S000 =
1

2
| det

R0 R1 r
B1 B0 b
1 1 1

 | = 1

2
|R0B0+R1b+rB1−R0b−R1B1−rB0|

Copyright c©2017 JD Vandenberg All rights reserved 24/48

Copyright c©2017 JD Vandenberg All rights reserved 25/48

3D LUT interpolation: Prism interpolation

(r , g , b)

(R0,G0,B0)

(R0,G0,B1)
(R1,G0,B0)

(R1,G0,B1)

(R0,G1,B0)

(R0,G1,B1)
(R1,G1,B0)

(R1,G1,B1)

V (r , g , b) =

V (R0,G0,B0)

S000
Stot

+ V (R0,G0,B1)
S001
Stot

+ V (R1,G0,B1)
S101
Stot

(1−∆g)

+

V (R0,G1,B0)

S010
Stot

+ V (R0,G1,B1)
S011
Stot

+ V (R1,G1,B1)
S111
Stot

∆g

(2)

Note that S000 = S010, S001 = S011 and S101 = S111.

25

3D LUT interpolation: Prism interpolation

We use the matrix notation and define the solution for both prisms
(p1, p2) using the following vectors:

V =

V (R0,G0,B0)
V (R0,G1,B0)
V (R1,G0,B0)
V (R1,G1,B0)
V (R0,G0,B1)
V (R0,G1,B1)
V (R1,G0,B1)
V (R1,G1,B1)

∆p =

1 ∆b ∆r ∆g ∆b∆g ∆r∆g

T

Copyright c©2017 JD Vandenberg All rights reserved 26/48

3D LUT interpolation: Prism interpolation

And by defining the two following matrices:

B1 =

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 0
−1 1 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0
0 0 0 0 1 −1 −1 1

B2 =

1 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 1 −1 0 0 −1 1
1 −1 −1 1 0 0 0 0

Copyright c©2017 JD Vandenberg All rights reserved 27/48

3D LUT interpolation: Prism interpolation

Now we can find the interpolation for each prism as

V (r , g , b)p1 = ∆T
p B1V

V (r , g , b)p2 = ∆T
p B2V

We have the same situation as with the trilinear interpolation as
the matrices B1V and B2V can be computed and stored in
advance since they don’t depend on the coordinates (r , g , b) or
∆r , ∆g and ∆b. That strategy could speed up the interpolation
process.

Copyright c©2017 JD Vandenberg All rights reserved 28/48

3D LUT interpolation: Pyramid interpolation

B
R

G

B
R

G

B
R

G

Copyright c©2017 JD Vandenberg All rights reserved 29/48

Copyright c©2017 JD Vandenberg All rights reserved 30/48

3D LUT interpolation: Pyramid interpolation

(r , g , b)

(R0,G0,B0)

(R0,G0,B1)
(R1,G0,B0)

(R1,G0,B1)

(R0,G1,B0)

(R0,G1,B1)
(R1,G1,B0)

(R1,G1,B1)

30

Copyright c©2017 JD Vandenberg All rights reserved 31/48

3D LUT interpolation: Pyramid interpolation

(r , g , b)

(R0,G0,B0)

(R0,G0,B1)

(R1,G0,B1)

(R0,G1,B1)

(R1,G1,B1)

31

Copyright c©2017 JD Vandenberg All rights reserved 32/48

3D LUT interpolation: Pyramid interpolation

(r , g , b)

(R0,G0,B0)

(R0,G0,B1)

(R1,G0,B1)

(R0,G1,B1)

(R1,G1,B1)

V (r , g , b) = V (R0,G0,B0)
V000

VPrism1
+ V (R0,G0,B1)

V001

VPrism1

+V (R1,G0,B1)
V101

VPrism1
+ V (R0,G1,B1)

V011

VPrism1

+V (R1,G1,B1)
V111

VPrism1

(3)

Rmk:
VPrism1 = V000 + V001 + V101 + V011 + V111

32

3D LUT interpolation: Pyramid interpolation

B R

G

B R

G

B R

G

The algorithm chooses the pyramid based on the cases:

◮ if ∆r > ∆b and ∆g > ∆b, then p = p1.

◮ if ∆b > ∆r and ∆g > ∆r , then p = p2.

◮ else p = p3.
Copyright c©2017 JD Vandenberg All rights reserved 33/48

3D LUT interpolation: Pyramid interpolation
We use the matrix notation and define the solution or the three
pyramids (p1, p2, p3):

V =

V (R0,G0,B0)
V (R0,G1,B0)
V (R1,G0,B0)
V (R1,G1,B0)
V (R0,G0,B1)
V (R0,G1,B1)
V (R1,G0,B1)
V (R1,G1,B1)

∆p1 =

1 ∆b ∆r ∆g ∆r∆g

T

∆p2 =

1 ∆b ∆r ∆g ∆g∆b

T

∆p3 =

1 ∆b ∆r ∆g ∆b∆r

T

Copyright c©2017 JD Vandenberg All rights reserved 34/48

Copyright c©2017 JD Vandenberg All rights reserved 35/48

3D LUT interpolation: Pyramid interpolation

And by defining the three following matrices:

C1 =

1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0

C2 =

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 1
−1 1 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0

C3 =

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
−1 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 1
1 0 −1 0 −1 0 1 0

35

3D LUT interpolation: Pyramid interpolation

Now we can find the interpolation for each pyramid as

V (r , g , b)p1 = ∆T
p1C1V

V (r , g , b)p2 = ∆T
p2C2V

V (r , g , b)p3 = ∆T
p3C3V

Again, the vectors C1V , C2V and C3V can be computed and
stored in advance since they don’t depend on the coordinates
(r , g , b) or ∆r , ∆g and ∆b. That strategy could speed up the
interpolation process.

Copyright c©2017 JD Vandenberg All rights reserved 36/48

3D LUT interpolation: Tetrahedral interpolation

B R

G

B R

G

B R

G

B R

G

B R

G

B R

G

Copyright c©2017 JD Vandenberg All rights reserved 37/48

3D LUT interpolation: Tetrahedral interpolation

The algorithm chooses the tetrahedron based on the cases:

◮ if ∆b > ∆r > ∆g , we chose the first tetrahedron (t1),

◮ if ∆b > ∆g > ∆r , we chose the second tetrahedron (t2),

◮ if ∆g > ∆b > ∆r , we chose the third tetrahedron (t3),

◮ if ∆r > ∆b > ∆g , we chose the fourth tetrahedron (t4),

◮ if ∆r > ∆g > ∆b, we chose the fifth tetrahedron (t5),

◮ else we chose the sixth tetrahedron (t6).

Copyright c©2017 JD Vandenberg All rights reserved 38/48

3D LUT interpolation: Tetrahedral interpolation
We use the matrix notation:

V =

V (R0,G0,B0)
V (R0,G1,B0)
V (R1,G0,B0)
V (R1,G1,B0)
V (R0,G0,B1)
V (R0,G1,B1)
V (R1,G0,B1)
V (R1,G1,B1)

∆t =

1 ∆b ∆r ∆g

T

Copyright c©2017 JD Vandenberg All rights reserved 39/48

Copyright c©2017 JD Vandenberg All rights reserved 40/48

3D LUT interpolation: Terahedral interpolation

And by defining the six following matrices:

T1 =

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 1

T2 =

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 1
0 0 0 0 −1 1 0 0

T3 =

1 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1
−1 1 0 0 0 0 0 0

40

Copyright c©2017 JD Vandenberg All rights reserved 41/48

3D LUT interpolation: Terahedral interpolation

T4 =

1 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0
−1 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 1

T5 =

1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1
−1 0 1 0 0 0 0 0
0 0 −1 1 0 0 0 0

T6 =

1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1
0 −1 0 1 0 0 0 0
−1 1 0 0 0 0 0 0

41

3D LUT interpolation: Tetrahedral interpolation

Now we can find the interpolation for each tetrahedron as

V (r , g , b)t1 = ∆T
t T1V V (r , g , b)t2 = ∆T

t T2V

V (r , g , b)t3 = ∆T
t T3V V (r , g , b)t4 = ∆T

t T4V

V (r , g , b)t5 = ∆T
t T5V V (r , g , b)t6 = ∆T

t T6V

Again, the vectors TiV , for i = 1, 2, 3, 4, 5, 6, can be computed
and stored in advance since they don’t depend on the coordinates
(r , g , b) or ∆r , ∆g and ∆b. That strategy could speed up the
interpolation process.

Copyright c©2017 JD Vandenberg All rights reserved 42/48

3D LUT interpolation: comparison of computational cost

Comparisons Multiplications Additions Storage*

Trilinear 0 7 7 12
Prism 1 5 6 9
Pyramidal 2 4 4 5
Tetrahedron 2.5 3 3 13

* pre-computed coefficient stored at each node

Copyright c©2017 JD Vandenberg All rights reserved 43/48

3D LUT interpolation: other approaches

Other ways to interpolate the 3D LUT:

◮ Cellular Regression

◮ Non-uniform lattice 3D LUT

◮ Alternative color spaces

Copyright c©2017 JD Vandenberg All rights reserved 44/48

3D LUT interpolation: Cellular Regression

A combination of three-dimensional interpolation and cellular
regression.
We apply regression to a small lattice cell (versus the whole cube).

Pros:

◮ No need to find the position of the interpolation within the
cube.

◮ No need for uniform packing: new 3D structures, like
hexahedra, can be used.

Cons:

◮ Higher computational cost

◮ Why not use a larger 3D LUT then?

Copyright c©2017 JD Vandenberg All rights reserved 45/48

3D LUT interpolation: Non-uniform lattice 3D LUT

Pros:

◮ Perception non-uniformity: We don’t see difference between
two colors the same depending on where we are in the cube.

◮ Does not require additional computational cost (most
hardware feature a front 3x 1D LUT)

Cons:

◮ Not ’hardware friendly’

Copyright c©2017 JD Vandenberg All rights reserved 46/48

3D LUT interpolation: Non-uniform lattice 3D LUT

B
R

G

Copyright c©2017 JD Vandenberg All rights reserved 47/48

Acknowledgment

◮ C. Poynton, Digital Video and HDTV Algorithm and
Interfaces, Morgan Kaufmann, San Francisco, 2003.

◮ Henry R. Kang, Computational Color Technology, SPIE Press
Book, 17 May 2006.

Copyright c©2017 JD Vandenberg All rights reserved 48/48

